Part Number Hot Search : 
10002 2SA1830 V8804F PC1197C T9520 B7842 F54709 MA101
Product Description
Full Text Search
 

To Download IRFU120ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr120zpbfIRFU120ZPBF hexfet ? power mosfet v dss = 100v r ds(on) = 190m ? i d = 8.7a  www.irf.com 1 this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free features d-pak irfr120zpbf i-pak IRFU120ZPBF hexfet ? is a registered trademark of international rectifier. absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i dm p u l se d d ra i n c urrent p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) si n gl e p u l se a va l anc h e e ner gy  mj e as (tested ) si n gl e p u l se a va l anc h e e ner gy t este d v a l ue  i ar a va l anc h e c urrent  a e ar r epet i t i ve a va l anc h e e ner gy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case CCC 4.28 r ja j unct i on-to- a m bi ent (pcb mount )  CCC 40 c/w r ja junction-to-ambient CCC 110 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) 35 0.23 20 max. 8.7 6.1 3520 18 see fig.12a, 12b, 15, 16 pd - 95772b downloaded from: http:///

 2 www.irf.com s d g el ec t r i ca l ch arac t er i s ti cs @ t j = 25c ( un l ess o th erw i se spec ifi e d) parameter min. typ. max. units v (br)dss drain-to-source breakdown volta g e 100 CCC CCC v ? v (br)dss / ? t j breakdown volta g e temp. coefficient CCC 0.084 CCC v/c r ds(on) static drain-to-source on-resistance CCC 150 190 m ? v gs(th) gate threshold volta g e 2.0 CCC 4.0 v g fs forward transconductance 16 CCC CCC s i dss drain-to-source leaka g e current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leaka g e CCC CCC 200 na gate-to-source reverse leaka g e CCC CCC -200 q g total gate char g eC C C 6 . 9 1 0 q gs gate-to-source char g e CCC 1.6 CCC nc q gd gate-to-drain ("miller") char g e CCC 3.1 CCC t d(on) turn-on dela y time CCC 8.3 CCC t r rise time CCC26CCC t d(off) turn-off dela y time CCC27CCCns t f fall time CCC23CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from packa g e and center of die contact c iss input capacitance CCC 310 CCC c oss output capacitance CCC 41 CCC c rss reverse transfer capacitance CCC 24 CCC pf c oss output capacitance CCC 150 CCC c oss output capacitance CCC 26 CCC c oss eff. effective output capacitance CCC 57 CCC source-drain ratings and characteristics parameter min. typ. max. units i s continuous source current CCC CCC 8.7 (body diode) a i sm pulsed source current CCC CCC 35 (body diode)  v sd diode forward volta g e CCC CCC 1.3 v t rr reverse recover y t i m e C C C2 43 6n s q rr reverse recover y char g e CCC 23 35 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 80v, ? = 1.0mhz v gs = 0v, v ds = 0v to 80v  v gs = 10v  v dd = 50v i d = 5.2a r g = 53 ? t j = 25c, i s = 5.2a, v gs = 0v  t j = 25c, i f = 5.2a, v dd = 50v di/dt = 100a/ s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 5.2a  v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 25v, i d = 5.2a i d = 5.2a v ds = 80v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v downloaded from: http:///

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v    


 
    
    0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v    


 
    
  4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60s pulse width t j = 25c t j = 175c 02468 i d, drain-to-source current (a) 0 2 4 6 8 10 12 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 100 200 300 400 500 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 024681 0 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 5.2a for test circuit see figure 13 0.0 0.5 1.0 1.5 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///

 www.irf.com 5 1e-006 1e-005 0.0001 0.001 0.01 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t j , junction temperature (c) 0 2 4 6 8 10 i d , d r a i n c u r r e n t ( a ) ri (c/w) i (sec) 0.33747 0.0000531.793 0.000125 2.150 0.000474 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 5.2a v gs = 10v downloaded from: http:///

 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.9a 1.2 bottom 5.2a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 2.0 3.0 4.0 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a downloaded from: http:///

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.01 0.1 1 10 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 4 8 12 16 20 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 5.2a downloaded from: http:///

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets  ?  !  ? "  ?  #$!  %& p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -       '' ? ()""*+  ? '(&,' -  ? !  ""*'./'/ ? ' -  0'(-   v ds 90%10% v gs t d(on) t r t d(off) t f  ' "12 1 3 '. 0.1 %  '       + -  '' fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///

 www.irf.com 9  

  

  
      
   12 in t he ass embly line "a" as se mb le d on ww 16, 1999 example: wi t h as s e mb l y this is an irfr120 lot code 1234 ye ar 9 = 1999 dat e code we e k 16 part number logo internat ional rectifier as s e mb l y lot code 916a irfu120 34 ye ar 9 = 1999 dat e code or p = de s ignat e s l e ad- f r e e product (optional) note: "p " in as s embly line pos ition indicates "l ead-f ree" 12 34 we e k 16 a = as s e mb l y s i t e code part number irfu120 line a logo lot code as s e mb l y int e rnat ional rectifier notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 10 www.irf.com   
    
      
    
  as s e mb l y example: wi t h as s e mb l y this is an irfu120 ye ar 9 = 1999 dat e code line a we e k 19 in the assembly line "a" as s e mble d on ww 19, 1999 lot code 5678 part numbe r 56 irfu120 internat ional logo rectifier lot code 919a 78  "p" in assembly line pos i ti on i ndi cates "l ead- f r ee"  56 78 assembly lot code rectifier logo international irfu120 part number we e k 1 9 dat e code year 9 = 1999 a = assembly site code p = d e s i gnat e s l e ad- f r e e product (optional) notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2010   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 1.29mh r g = 25 ? , i as = 5.2a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFU120ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X